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Abstract: Generation of mature differentiated cells is essential for the treatment of several diseases that depend on cell 
replacement therapies. With the growing knowledge of transcriptome diversity in cells, increased understanding now 
exists on the potential to inter-convert a specialized cell type into a differentiated cell of another lineage 
(transdifferentiation). Transcription in terminally committed cells is controlled by many extracellular and intracellular 
components and the intrinsic structure and confirmation of the DNA itself (the epigenome). The patterns of these 
modifications in differentiated cells are generally stable and heritable with characteristic modification patterns reflecting 
the phenotype they acquire during differentiation. Adult tissue-derived stem or progenitor cells possess inherent traits that 
result in “commitment” to a particular phenotype, demonstrated by their relatively restricted differentiation capacity. 
Adult tissue-derived stem cell populations represent a source of cells that would predictably require fewer manipulations 
to achieve an alternative, differentiated phenotype. By characterising cells with respect to epigenetic patterns, it may be 
possible to identify stem / progenitor cells that are poised to differentiate towards a particular lineage. Assessing the 
chromatin compactness at gene promoter regions may assist in identifying mechanisms for inducing cells to adopt a 
specific phenotype with increased efficiency of differentiation.  
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INTRODUCTION 

 Diseases such as diabetes, multiple sclerosis, muscular 
dystrophy and myocardial infarction cannot be completely 
cured with conventional therapies. Regenerative medicine 
using alternative stem cell therapies may provide a potential 
biological solution to address such conditions. Regenerative 
medicine represents a mixed medical discipline, combining 
collective knowledge of physiology, cell biology, genetics 
and engineering to apply stem cells, biomaterial scaffolds 
and cytokine growth factors for treatment of several 
diseases, such as type 1 diabetes mellitus. 
 It is well known that human cells are diverse with respect 
to their epigenome, transcriptome and proteome. However, 
all cells are derived from a single cell; the fertilized ovum. 
The concept of dedifferentiation of cells back to a precursor 
or stem-like cell type and then inter-conversion to another 
type of differentiated cell (transdifferentiation) has been 
widely discussed [1-5]. Utilizing the process of transdiffe-
rentiation to provide cells for the treatment of several 
diseases including diabetes has enormous practical potential 
to treat common diseases which inflict millions of sufferers 
world-wide.  
 Type 1 Diabetes is caused by loss of insulin-producing 
beta cells in the pancreatic Islet of Langerhans. Although 
significant advances in treating diabetes were made in the  
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past few decades, lack of suitable organ donors for islet or 
beta cell transplantation is still a major hurdle. An alternative 
approach to overcome donor islet shortage is to produce beta 
cells in the laboratory for transplantation into patients. 
Research from our group and others demonstrates the 
possibility of inter-conversion of cells harvested from the 
gallbladder or liver into insulin-producing cells [6-8]. 
However, none of the studies published to date have been 
successful in producing cells identical to islet beta cells. 
Generating lineage-committed islet progenitor cells is a 
major challenge in cell replacement therapy for diabetes.  
 In the past decade, the term “stem cell” has been loosely 
defined by the capacity for extensive self-renewal and 
provision of abundant daughter cells. However, research in 
understanding the programming of stem cells to differentiate 
into a single specialized tissue, or organ specific cell type by 
acquiring the correct phenotypic / biochemical and func-
tional properties remains to be explored. Stem cells are typi-
cally classified into one of three classes: embryonic, post-
natal and induced pluripotent stem (iPS) cells. Embryonic 
stem (ES) cells are isolated from the inner cell mass and 
considered to be pluripotent, with the potential to differ-
rentiate into almost all the tissues/organs that arise from the 
three germ layers (however these cells cannot form a 
complete embryo, lacking the capacity to form placental and 
supporting tissues) [9, 10]. The choice of embryonic stem 
cells for potential cell therapies is highly debated and 
remains controversial [11]. Post-natal (adult / progenitor) 
stem cells have been identified in virtually all organs in the 
body and are thought to represent reservoirs of precursor 
cells that contribute to maintenance and regeneration of the 
organ / tissue throughout life. These cells tend to 
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demonstrate a limited differentiation potential, generally 
restricted to forming differentiated cell types in the tissue 
from which they are derived [9, 10]. The division between 
embryonic and post-natal stem cells has become blurred 
following the demonstration of adult murine fibroblasts 
reprogrammed to pluripotency though the application of four 
factors (Oct3/4, Sox2, c-Myc, and Klf4, under embryonic 
stem cell culture conditions) to generate induced pluripotent 
stem (iPS) cells [12]. These iPS cells were injected into 
blastocysts and shown to contribute to all three germ layers. 
These findings questioned the term “stemness”, which was 
thought to be only a property of embryonic stem cells. The 
term “stemness” can now be defined as a property of the 
cell; the property of having a specific set of genes whose 
expression allows potential for self-renewal as well as for 
multilineage differentiation and regeneration. It has been 
suggested that stemness may represent a transient and 
reversible trait that is acquired by cells when exposed to the 
necessary environmental cues (niche) [13]. The resulting 
expression and localization of proteins, nucleic acids, lipid 
and specific patterns of chromatin organization give rise to a 
stem-cell phenotype. Two alternative models of stem cell 
differentiation have been proposed [13, 14]. The first 
assumes that the stem cells represent a “blank slate” and do 
not express any genes characteristic of differentiation. Upon 
induction to differentiate, cells acquire specific differentia-
tion markers in a step-by-step manner until they achieve a 
mature phenotype or in other words, “commit” to a specific 
lineage. The second model proposes that stem cells express 
very low levels of “specialized” markers. Differentiation is 
characterized by an increase in expression of these markers 
characteristic of the lineage accompanied by simultaneous 
silencing of gene expression for unrelated lineages.  

EPIGENETIC REGULATION OF STEM CELL 
TRANSCRIPTOME 

 Transcription in terminally committed cells is controlled 
by many extracellular and intracellular components and the 
intrinsic structure and confirmation of the DNA itself (the 
epigenome). In eukaryotic cells, DNA exists as chromatin, 
composed of the DNA and associated nuclear proteins; 
histones. Each repeating unit (nucleosome) is composed of 
an octameric protein core containing two subunits of H2A, 
H2B, H3 and H4 and a 146 base pair DNA wrapped around 
this histone octamer [15, 16]. Histone interactions are 
mediated through the phosphodiester skeleton of the DNA 
molecule and as such are largely independent of the DNA 
sequence. Histones undergo several different post-transla-
tional modifications including acetylation, methylation, 
phosphorylation, sumoylation and ubiquitination. DNA 
methylation also represents heritable epigenetic marks for 
active or inactive chromatin [17]. DNA methylation of cyto-
sine in CpG dinucleotides is mediated by DNA methyl-
transferases [18-20]. DNA methyltransferase 1 (Dnmt1) is a 
maintenance enzyme that methylates hemi-methylated CpG 
dinucleotides to preserve methylation patterns in proliferat-
ing cells. Dnmt3a and Dnmt3b are responsible for methyla-
tion patterning of the DNA in development and have been 
shown to interact with histone modifying enzymes to repress 
transcription. DNA methylation is typically associated with 
persistent gene silencing [21]. Histone modification is 

mediated through covalent modifications of the exposed N-
terminal tails of the histone amino acid chains [22]. Multiple 
modification mechanisms have been characterized including 
acetylation of the lysine resides, methylation of lysine and 
arginine residues [20, 23], phosphorylation of serine residues 
[24], poly(ADP) ribosylation of glutamate residues [25], 
ubiquitinylation and sumoylation [26].  
 Transcriptionally active chromatin contains characteristic 
site-specific modifications to the N-terminal domains of 
histone molecules. Acetylation/deacetylation of lysines 
correlates with chromatin accessibility and transcription, 
whereas the effect of lysine methylation depends on the 
number of methyl groups and position of lysine residues. 
The less compacted nature of euchromatin leaves DNA open 
and accessible to facilitate transcription. Trimethylation of 
histone H3 lysine 4 (H3K4-me3) and acetylation of H3 and 
H4 are associated with active transcription [27, 28]. High 
levels of acetylation and trimethylation of H3K4, H3K36, 
and H3K79 is synonymous with transcriptionally active 
genes while low levels of these modifications are associated 
with inactive genes. How these modifications manifest as 
altered transcription activity is not fully understood, however 
trimethylation of H3K4 is thought to mediate recruitment of 
chromatin-remodelling complexes to promoters [29], with 
long non-coding (nc)RNAs possibly acting as a modular 
scaffold for histone modification complexes [30].  
 The patterns of these modifications in differentiated 
somatic cells are generally stable and heritable [19, 31] with 
characteristic modification patterns reflecting the phenotype 
they acquire during differentiation. Cells obtained from the 
early blastula have revealed that the DNA of a newly created 
embryo is highly unmethylated [32], which persists until 
implantation [33]. As cells begin to commit to specific 
lineages, they acquire a specific phenotype dictated by 
tissue-specific transcription factors and develop charac-
teristic epigenetic modifications. Genes associated with 
pluripotency become inaccessible to transcription factors 
with remodelling of chromatin and are therefore silenced. 
Conversely, the chromatin in the region of genes associated 
with a particular cell fate or lineage achieves an “open” 
conformation so as to provide access for the binding of 
transcriptional machinery. During embryonic development, 
the entire genome is known to go through several levels of 
compaction and relaxation of chromatin. This process is 
initiated through recruitment of specific enzymes that engage 
in post-translational modification of histones. The deve-
loping tissues then achieve specific phenotypes based on 
spatio-temporal expression of factors that can be collectively 
termed as growth and differentiation factors (GDFs) [34]. 
Pancreatic stem / progenitor cells are exposed to different 
concentrations of these GDFs during embryonic develop-
ment to give rise to differentiated insulin-producing cells in 
the Islets of Langerhans. Such differentiated cells carry the 
epigenetic marks that allow open chromatin conformation at 
the insulin promoter region as well as the key pancreatic 
transcription factors (such as Pdx1, MafA) in islet beta cells 
[35]. Therefore adult tissue-derived stem or progenitor cells 
possess inherent traits that result in a predisposition or 
“commitment” to a particular phenotype, demonstrated by 
their relatively restricted differentiation capacity as com-
pared to other cell types, such as ES cells. These populations 
represent a source of cells that would predictably require 



30     The Open Stem Cell Journal, 2011, Volume 3 Williams et al. 

fewer manipulations than pluripotent cells to achieve their 
differentiated phenotype [36]. Although the specific mecha-
nisms responsible for the intrinsic propensity of cells to 
differentiate along a particular lineage remain largely 
unknown, we theorize that epigenetic mechanisms, including 
DNA methylation, covalent histone modifications, and non-
coding RNA-mediated gene regulation are largely involved 
in development of a differentiated phenotype [37, 38] (see 
Fig. 1).  
 Gene expression is also epigenetically regulated at the 
posttranscriptional level through an additional epigenetic 
mechanism; non-coding microRNAs (miRNAs). miRNAs 
represent an evolutionary conserved class of short (18-22 bp) 
non-protein-coding RNA molecules. They can be classified 
into three categories [39, 40] based on their location in the 
genome; (i) exonic miRNAs in non-coding gene transcripts, 
(ii) intronic miRNAs in non-coding gene transcripts and (iii) 
intronic miRNAs in protein-coding gene transcripts. 
miRNAs mediate the regulation of gene expression based on 
the level of complementarity between the given miRNA seed 
sequence (first 2 to 8 bp of miRNA) and regulatory regions, 
such as RNA interference and RNA editing [41]. miRNAs 
are known to negatively regulate gene expression at the post-
transcriptional level, either by inhibiting translation or by 
degrading the target mRNA [42, 43]. Several miRNAs (miR-

15a, miR-15b, miR-16 and miR-195) have been identified as 
targeting ngn3 during pancreatic regeneration, implicating 
these miRNAs in the regulation of islet beta-cell rege-
neration [40, 44]. This understanding will potentially yield a 
novel targeted manipulation of these specific miRNAs for 
the induction of differentiation of pancreatic progenitor 
populations and possibly other less related cell populations.  
 The coming years will uncover the potential regulatory 
control of these iRNAs in cell differentiation. 

EPIGENETICS AND STEM CELL BIOLOGY 

 Adult or progenitor cells inherit epigenetic modifications 
following proliferation. Therefore, by characterising cells 
with respect to epigenetic patterns, it may be possible to 
identify cells that are poised to differentiate towards a par-
ticular lineage. By assessing the compactness of chromatin at 
specific gene promoter regions that are located with regions 
of transcriptionally permissive chromatin, it is possible to 
identify methods of inducing the cells to adopt a specific 
phenotype. Current methods of altering the epigenome of 
isolated cells involve the use of DNA methyltransferases and 
histone deacetylase inhibitors which act on the epigenome on 
a global scale [45]. These agents are largely non-specific, 
preventing the targeted application to chromosomal regions 

 
Fig. (1). A representation of transcript abundance and chromatin conformation of stem and islet progenitor cells. (A) Stem cells have a 
relatively open chromatin conformation and therefore demonstrate expression of endocrine progenitor markers albeit at lower levels. With 
successive differentiation into endodermal (B) and pancreatic (C) lineages, the accessible chromatin (seen in panel A) is replaced by 
selective silencing of specific genes. Islets (D) represent a highly efficient insulin-producing cell type that offers a suitable chromatin 
conformation, which allows the transcriptional machinery to bind to the promoter region and transcribe these genes. An optimal promoter 
conformation is the major key to efficient transcription / differentiation of cells. 
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or gene promoters to elicit specific effects. The application 
of these agents is therefore limited, however they have been 
shown to alter cell differentiation [23, 46, 47] and their 
applications in anticancer therapy is being explored [45, 48], 
with DNA methyltransferase inhibitors like 5-azacytidine 
and 5-aza-2'-deoxycytidine currently FDA approved for the 
treatment of myelodysplastic syndrome.  
 The advantage of using adult stem cells over more 
pluripotent cell sources, such as embryonic stem cells, is 
their apparently restricted potential to differentiate into 
specific lineages, which is inherited in their epigenome. As 
stated previously, the predisposition for adult stem cells to 
differentiate into a particular cell type means that these cells 
would predictably require less manipulation to achieve the 
desired cell type. Compared to adult stem cells, embryonic 
stem cells are thought to require more extensive manipula-
tion to direct them towards a specific lineage [36]. The open 
chromatin conformation seen at multiple promoter regions in 
ES cells also suggests the rationale for open chromatin struc-
ture in stem cells. Adults stem cells are also a potentially 
safer cell source, compared to embryonic stem cells, which 
are known to form teratomas, a specific type of tumour 
consisting of derivatives of all three germ layers when 
implanted into ectopic sites [49, 50]. This effect has not been 
reported following implantation of adult stem (progenitor) 
cells. Exploration of the clinical potential of adult stem cells 
in regenerative medicine provides a potentially large pool of 
cells, which are ethically far less contentious than embryonic 
stem cells. However, the collective efforts to characterize 
and understand developmental cues for patterning and 
differentiation of cells throughout development, embryonic 
and adult, are vital to understanding and predicting the 
behaviour and activity of adult stem cells. However, the 
future of regenerative medicine lies with adult or progenitor 
stem cells opposed to embryonic stem cells, at least in the 
foreseeable future.  

ADULT STEM CELLS FOR REGENERATIVE 
MEDICINE 

 The governing criteria for the choice of adult stem cells 
in pre-clinical and clinical studies has included the avail-
ability and expansion of isolated cells in accordance with 
current Good Manufacturing Practice, their potential to be 
reliably directed along a particular lineage and their safe 
application in a clinical setting [51]. In accordance with 
these characteristics mesenchymal cells isolated from the 
bone marrow, adipose tissue and peripheral blood and 
umbilical cord-derived mononuclear cells may represent 
potential candidates for therapeutic applications in a clinical 
setting. Cells obtained from bone marrow and adipose tissue 
have demonstrated multilineage potential and promise of 
applications in regenerative medicine [10, 52-54] , as have 
peripheral blood [55-57] and umbilical cord [58-60] cells. 
However, the epigenome of these respective cell populations 
remains largely undefined [61]. The choice and implement-
tation of cells for the regenerative treatment of patients 
suffering with type 1 diabetes mellitus is of particular 
interest to our group. For a treatment to be successful, a 
sufficient number of insulin-producing cells must be implan-
ted into the patient, such that the individual can maintain 
normal circulating glucose concentrations. Allogenic 

transplantation of the Islets of Langerhans from human 
cadavers [62] has been approved for clinical research and has 
achieved positive results. However, this technology is 
limited by the low number of cadaveric donors and the 
restricted yield of viable cells for transplantation. Therefore, 
research groups around the world are seeking alternative cell 
sources with the potential to give rise to insulin-expressing 
cells for transplantation [63, 64]. In line with our hypothesis 
regarding the use of differentiated cell types, we believe that 
cells isolated from pancreatic tissues (endocrine, acinar or 
ductal) or cells isolated from other (particularly endodermal) 
tissues (gallbladder and liver) represent alternative cell 
sources for reliable generation of insulin-producing cells. 
There is now a growing body of evidence to suggest that it is 
possible to induce the transdifferentiation of hepatocytes [6, 
65, 66] , intra-/extrahepatic biliary epithelial cells [7] and 
gall-bladder epithelium [8] to express markers characteristic 
of the pancreatic lineage with relatively little in vitro 
manipulation. These studies demonstrate the potential of 
adult stem cells from a range of tissue sources to be directed 
to achieve an endocrine pancreas phenotype, and the 
optimization of these techniques for use in clinical 
applications is currently under investigation.  

CONCLUSION 

 We are now only beginning to understand the roles of 
epigenetic characteristics and non-coding RNAs in cell 
behaviour and the maintenance of specific phenotypes. This 
may have significant implications for the choice of adult 
stem cells for clinical applications and the techniques used to 
achieve differentiation to the desired lineage. By combining 
this knowledge with the information already acquired about 
the differentiation of cells in culture, future studies will 
identify novel regulatory pathways and in vitro methods 
capable of achieving robust and reliable differentiation of 
isolated adult stem cells for downstream applications in a 
clinical scenario.  
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